
Parallelization of an Adaptive Mesh Refinement Method
for Low Mach Number Combustion∗

Charles A. Rendleman
Vincent E. Beckner

Mike Lijewski

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

January 30, 2001

Abstract

We describe the parallelization of a computer program for the adaptive mesh refinement
simulation of variable density, viscous, incompressible fluid flows for low Mach number com-
bustion. The adaptive methodology is based on the use of local grids superimposed on a
coarse grid to achieve sufficient resolution in the solution. The key elements of the approach to
parallelization are a dynamic load-balancing technique to distribute work to processors and a
software methodology for managing data distribution and communications. The methodology
is based on a message-passing model that exploits the coarse-grained parallelism inherent in
the algorithms. A method is presented for parallelizing weakly sequential loops—loops with
sparse dependencies among iterations.

1 Introduction

Advanced, higher-order finite difference methods and local adaptive mesh refinement have proven
to be an effective combination of tools for modeling problems in fluid dynamics. However, the dy-
namic nature of the adaptivity in time dependent simulations makes it considerably more difficult to
implement this type of methodology on modern parallel computers, particularly, distributed mem-
ory architectures. In this paper we present the parallelization of a computer program using a soft-
ware framework that facilitates the development of adaptive algorithms for multiple-instruction,
multiple-data (MIMD) architectures. The particular form of adaptivity we consider is a block-
structured style of refinement, referred to as AMR, that was originally developed by Berger and
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Oliger [5]. The methodology uses the approach developed by Berger and Colella [4] for general
systems of conservation laws, its extension to three dimensions by Bell et al. [2], and incompress-
ible flows by Almgren et al. [1]. Subsequently, this work was extended to the simulation of low
Mach number combustions by Pember et al. [13] and by Day and Bell [10]. This paper discusses
the AMR parallel implementation of the algorithm described by Day and Bell [10]

AMR is based on a sequence of nested grids with finer and finer mesh spacing in space,
each level being advanced in time with time step intervals determined by the Courant-Friedrich-
Level (CFL) condition. The fine grids are recursively embedded in coarser grids until the solution
is sufficiently resolved. An error estimation procedure automatically determines the accuracy of
the solution and grid management procedures dynamically create rectangular fine grids where re-
quired to maintain accuracy or remove rectangular fine grids that are no longer required for accu-
racy. Special difference equations are used at the interface between coarse and fine grids to insure
conservation.

In this paper we describe the application of the framework to the parallelization of an AMR
numerical solution of low Mach number reacting flows with complex chemistry. developed by
Day and Bell [10] extending work on the modeling of incompressible fluid flows by Almgren et
al.[1]. Rendleman et al. [15] have described a general framework for the implementation of parallel
AMR algorithms, and demonstrated its application to the parallelization of AMR to hyperbolic
conservation laws. That framework was developed based on experience gained from researchers
in our group and others [8, 9, 3, 7, 11]. In that approach, data distribution and communication are
hidden in C++ class libraries that isolate the application developer from the details of the parallel
implementation.

In the next section we will briefly review the basic algorithmic structure of AMR with empha-
sis on the particular case of incompressible fluid flow. The dynamic character of AMR leads to a
dynamic and heterogeneous work load. In section 3 we discuss the basic parallelization strategy
and the load-balancing techniques we use for AMR algorithms. Section 4 provides a description of
the parallel implementation (described more fully elsewhere [15]), focusing primarily on the addi-
tional methods used to parallelize algorithms specific to AMR for incompressible flows. Finally,
we illustrate the use of the program with a simulation of a three dimensional premixed combustion
flow.

2 The Adaptive Mesh Refinement Algorithm

AMR solves partial differential equations using a hierarchy of grids of differing resolution. The
grid hierarchy is composed of different levels of refinement ranging from coarsest (l = 0) to finest
(l = lmax). Each level is represented as the union of non-intersecting logically rectangular grid
patches of a given resolution. In this work, we assume the level 0 grid is a grid patch decom-
position of a single rectangular parallelepiped, theproblem domain. In this implementation, the
refinement ratio is always even i.e.,∆xl+1 = ∆xl/r, wherer is the refinement ratio, which in the
implementation, can be a function of level. The grids areproperly nested, in the sense that the
union of grids at levell + 1 is contained in the union of grids at levell for 0 ≤ l < lmax, and
the levell grids are large enough to guarantee that there is a border at least one levell cell wide
surrounding each levell + 1 grid. Proper nesting does not require that a fine sub-grid not cross a
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Figure 1:Two levels of refined grids. Grids are properly nested, but may have more that one parent grid.
The thick lines represent grids at the coarse level; the thin lines, grids at the fine level.

coarser sub-grid boundary. Grids at all levels are allowed to extend to the physical boundaries so
the proper nesting is not strict there. This is illustrated in Figure 1 in two dimensions. (This set of
grids was created for a problem with initial conditions specifying a circular discontinuity.)

Both the initial creation of the grid hierarchy and the subsequent regriding operations in which
the grids are dynamically changed to reflect changing flow conditions use the same procedures to
create new grids. Cells requiring additional refinement are identified and tagged using an error
estimation criteria, possibly using Richardson extrapolation [4]. The tagged cells are clustered [6]
into rectangular patches, which in general contain cells that were not tagged for refinement; typi-
cally 70% of the cells in a new grid have been tagged by the error estimation process. When new
grids are created at levell + 1, the data on these new grids are copied from the previous grids at
level l + 1 where possible, otherwise the data is interpolated in space from the underlying levell
grids.

The AMR algorithmis a recursive procedure that advances each levell, 0 ≤ l ≤ lmax, with a
time-step appropriate to that level, based on CFL considerations. The adaptive algorithm advances
the grids at each level independent of other levels in the hierarchy except for obtaining boundary
data and the synchronization between levels. The coarser grids supply boundary data in order
to integrate finer grids, by fillingghost cellsin a band around the fine grid data whose width
is determined by the stencil of the finite difference scheme. If this data is available from grids
at the same level of refinement the data is provided by a simple copy, otherwise it is obtained
by interpolation of coarser grid data in time and space. When the coarse and fine grids have
been advanced to the same time and we synchronize, there are three corrections that we need to
make. First, we replace the coarse data by the volume weighted average of covering fine grid data.
Second, we must correct the coarse cell values by adding the difference between the coarse and fine
grid fluxes used to advance grids at their respective levels. Third, we also impose the divergence
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constraint to the velocity field over the composite grid system. See Almgren et al. [1] for more
details on the synchronizations of data between levels.

3 Parallelization of AMR

We have adopted a coarse-grained, message-passing model, using MPI [17, 12], in our approach
parallelization. This approach is generally associated with distributed memory MIMD architec-
tures, but it can be used on shared memory architectures as well. We make this choice because
it enhances portability on distributed memory architectures, and because we feel message-passing
programs are more robust. In message-passing parallel programs, the only communication between
processors is through the exchange of messages. Direct access to another processor’s memory is
not provided. In this approach, it is critical to choose carefully which processor has which piece
of data. As is apparent from Figure 1, grids vary considerably in size and shape. In AMR the
number of grids also changes and is seldom an integer multiple of the number of processors. It is
therefore inefficient to assign the grids sequentially to the processors, since the result is unlikely
to be load balanced. We will use a load-balancing strategy based on the approach developed by
Crutchfield [8, 15]. Because most of the data and computational effort is required by the finest
level of grids, we need only be concerned with load-balancing the grids on the finest level. In
general, the effort required by the coarser grids will be a minor perturbation.

We accept the set of grids provided by the regriding algorithm and seek to find a well-balanced
assignment of grids to processors. It turns out to be possible to find well-balanced assignments if
we can make the following assumptions.

1. The computational cost of a grid can be estimated using some type of work estimate.

2. The total computational cost of the algorithm is well approximated as the sum of the costs
of time-stepping the grids on the finest level. Other costs such as communications, time-
stepping coarser grids, regriding, refluxing, etc., are treated as ignorable perturbations.

3. The grids can be approximated as having a broad random distribution, i.e., that the standard
deviation of the distribution is not small compared to the average.

4. The average number of grids per processor is at least three.

We have developed an algorithm [8, 15] based on an application of the well-known knapsack
dynamic programming algorithm, a description of which may be found in Sedgewick’s book on
algorithms [16]. This approach finds the distribution of grid blocks among processors that results
in the smallest total computation time.

While the cost of communication is generally important in message-passing parallel programs—
and effort is devoted to its reduction—such costs are ignored in this load balance scheme. No
effort is made to reduce communication costs by placing adjacent grids on the same processor, or
on adjacent processors. Since the ratio of communication cost to calculation cost for modern mul-
tiprocessors is not overly large, it is reasonable to ignore communication costs in the load balance
only if significant computation is done relative to communications. In general, this assumption
holds for the application described in this paper because of the amount of work in the chemical
reactions calculation.
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4 Implementation

The methodology described in this paper has been embodied in a software system that allows for
a broad range of physics applications. It is implemented in a hybrid C++/FORTRANprogramming
environment where memory management and control flow are expressed in the C++ portions of the
program and the numerically intensive portions of the computation are handled inFORTRAN. The
software is written using a layered approach, with a foundation library,BoxLib, that is responsible
for the basic algorithm domain abstractions at the bottom, and a framework library,AMRLib, that
marshals the components of the AMR algorithm, at the top. Support libraries built onBoxLib
are used as necessary to implement application components such as interpolation of data between
levels, the coarse-fine interface synchronization routines, and linear solvers used in the projection.

The fundamental parallel abstraction is theMultiFab , which encapsulates theFORTRAN
compatible data defined on unions ofBoxs; a MultiFab can used as if it were an array of
FORTRANcompatible grids. The grids that make up theMultiFab are distributed among the
processors, with the implementation assigning grids to processors using the distribution given by
the load balance scheme described in section 3. Non-MultiFab operations and data-structures
are replicated across all of the processors. This non-parallel work is usually measured to be small.
Because each processor possesses the global data layout, the processor can post data send and
receive request without a prior query for data size and location.

MultiFab operations are performed in one of three ways depending on the implicit commu-
nications pattern. In the simplest case, there is no interprocessor communication; the calculation
is parallelized trivially with anowner computesrule with each processor operating independently
on its local data. This is the case with chemistry state evaluations. Different parallel constructs are
necessary when data communication involves more than oneMultiFab , an example of which is
thefill patch operation, which interpolates from coarse cell data on to overlying fine grid patches.
Such constructs cannot be implemented by simply nesting loops because outer loop bodies for sub-
grids that are off-processor will not be executed. They must be implemented by our second method
using two stages: data is exchanged between processors and then the local targets are updated.

The third, more complicated case, arises in parallelizing loops in the multi-level projection
method. The difficulties arise from several causes. First, the original projection method was im-
plemented using libraries that differ somewhat from theBoxLib/AMRLib libraries, though they
share a number of features. For example, the projection uses fill patch operations with different
treatments of physical and interior boundary conditions. The major difficulty, however, is a result
of the special requirements of the adaptive projection itself. The formulation of the projection al-
gorithm requires that loops be applied in a specific order with possible coupling from loop body
to loop body. For example, stencils are evaluated by looping over faces, edges and then corners of
grids in the associatedMultiFab , where results of earlier iterations of the loops may affect the
results of subsequent iterates. In addition, the boundary patch filling operation copies in stages,
with data from initial stages contributing to data at later stages. The same output patch in an op-
eration may be repeatedly updated in an order specific fashion, and a source patch may require to
be updated before being used by an output patch. These order dependencies in operator evaluation
give rise to what may be calledweakly sequential loops.

Weakly sequential loops can be characterized using the language of graph theory. Loop bodies
correspond to nodes in the graph and dependencies in the iterations of the loop body correspond
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WeakSeqCopy(MultiFab& mf_to, const MultiFab& mf_from)
{

task_list tl;
for(int i = 0; i < mf_to.length(); ++i)
{

for(int j = 0; j < mf_from.length(); ++j)
{

tl.add_task(new task_copy(tl, mf_to, i, mf_from, j));
}

}
tl.execute();

}

Figure 2: A weakly sequential implementation of a fill boundary operation

to directed edges in the graph. The nodes in the graph can have more than one prior node, and can
themselves be the prior nodes of more than one subsequent node. Analogously, weakly sequential
loops are similar to the model used in the standard Unix utility,make, that manages compilation
dependencies. Here a node, usually representing a file, is said to depend on other nodes (files), and
can itself be a dependency of other files. The method we use to evaluate weakly dependent loops
is again analogous to way themakeprogram operates: themakeprogram traverses the dependency
graph defined in theMakefile in such a way that a file is processed by a rule if its dependencies
are up to date.

We will use the example in Figure 2 to illustrate the use of weakly sequential loops. The
add task method of thetask list , is responsible for inserting a task into the task loop and
evaluating dependencies of the current task on prior tasks in the loop. Thetask copy is a
helper-class that implements copying of data from sub-gridj of the MultiFab mf from to
sub-gridi of mf to. The task list is passed to the constructor of thetask fill operation
so that dependencies can be detected among loop iterations. This style of coding has the effect
of flattening multiply nested parallel loops into a single serial loop that is processed as indicated
below.

The execute member oftask list used in Figure 2 causes each task to be executed in
task list using the algorithm in Figure 3. The loop attempts to maximize concurrency by using
asynchronous message passing calls. Potentially, many messages requests can be outstanding,
though in practice MPI implementations restrict the number of outstanding posted messages. For
that reason, the loop is “throttled” by limiting the number of active members of the task loop.
When a task is marked as finished, it is cleared from the dependency list of all remaining tasks in
the loop.

Naive implementation of the construction of the dependency graph results in an operation count
of O(N2), whereN is the number of loop elements, usually proportional to the number of grids
at a level. This could be significant for the case when there are thousands of elements in the loop,
a situation that is not uncommon. However, careful implementation reduces computation cost to
O(N/P )2, which exhibits lower growth because the number of processors,P , used in a calculation
is an increasing function of the number of grids. The careful implementation removes tasks from
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Proceduretask list::execute()
while task list not empty

Pop head of task list into task T.
if T has no outstanding dependencies

if T has not been started, Start T, post message passing requests
if T is message complete, Execute T and mark as finished;

else
Push T at end of task list

endif
end while

End Proceduretask list::execute

Figure 3: Algorithm fortask list::execute

the task loop as they are added if the task does not use data local to that processor, or if it uses data
only local to that processor and the task does not depend on prior tasks in the task list.

The principle disadvantage of the task list approach is that it encourages an unnatural coding
style: a helper class must be implemented for each loop in the program. For the projection, which
consists of approximately 13,000 lines of C++ (and 16,000 lines ofFORTRAN), less than a dozen
helper classes are needed.

5 Numerical Example

The example we choose to illustrate the use of the program represents a simplified model of spray
fueling in an internal combustion engine. A spray of premixed fuel droplets enters a turbulent
combustion chamber, where it is heated, evaporated and burned. Here, the fuel-rich spray is as-
sumed to be heated to 1000 K by other processes, and the calculation evolves the combustion of
fuel in two simultaneous combustion modes: a fast premixed burn of the heated fuel, and a slower
diffusion flame at the interface between the air and remaining fuel. In this model, a 1 cm radius
sphere of 1000 K hydrogen-air mixture (equivalence ratio = 4) is used to represent the fuel. A
domain of 10x10x10 cm, co-centered with the initial fuel sphere, is initialized with room temper-
ature isotropically turbulent air. All the boundaries of the domain are outflowing. In the initial
stages, the fuel sphere expands from the temperature rise due to the fast premixed burn. The ex-
pansion, and resulting interaction with the background turbulence, generates surface instabilities
at the interface between the fuel and air, increasing the interface area, reactant mixing, and overall
consumption rate of the fuel. 9 chemistry species (H2, H, O, O2, OH, H2O, HO2, H2O2, andN2)
with 27 reactions among them are used to model the combustion process.

The simulation was performed on the IBM Power3 SMP system at the U.S. Army Engineer
Research and Development Center, Major Shared Resource Center in Vicksburg, MS. The AMR
parameters used specified 2 levels of refinement with a refinement ratio of 2. The concentration
of speciesH2O2 is used to mark the zones in the model that require refinement. The coarse grid
consisted of 32 zones in each coordinate direction. With these refinement ratios the finest level has
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Figure 4: High temperature at fuel-air interface rendered at time step 380. Solid lines indicate
refined zones at the finest two resolutions. The coarse grids is not shown.

an effective resolution of 128 zones in each coordinate direction. For this relatively small model,
only 8 processors were used, in accord with our load-balance guidelines of assigning 3 or more
grids per processor (section 3). Figure 4 show a rendering of the temperature at time step 380. At
this point in the simulation, there are 34 grids at the finest level, covering approximately 18% of
the domain. Approximately 30% of the computational time is consumed in evaluating the chemical
reaction processes. The remainder of the time is roughly allocated to 5% for scalar advection, 20%
for the velocity projection, and 30% for diffusion of the chemical species. The remainder of the
time is charged to overhead associated with the adaptive algorithm and with the technique, not
described here, used to load balance the chemistry [14].

6 Conclusions

We have described the techniques used to parallelize an AMR variable density, viscous, incom-
pressible flow solver targeted to low-Mach number reacting flows. One of the applications of this
program, together with its companion program for hyperbolic systems of conservation laws de-
scribed in Rendleman et al. [15], is to provide end-to-end simulation capabilities for explosions in
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buried chamber systems. The hyperbolic code is used to examine the prompt effects of the explo-
sion, while the low-Mach number code is used to monitor longer time scale processes associated
with burning of the chamber system’s contents. The methods used are rectangular sub-grid de-
composition of data among parallel processors and a use of SPMD style programming constructs.
Load balance is achieved using an efficient and effective dynamic-programming algorithm. We
also described our software methodology including a novel technique for identifying and evaluat-
ing weakly sequential loops. We demonstrated the use of the program for an example of pre-mixed
fuel air combustion in a room temperature isotropically turbulent body of air.
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